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In this paper, we study the propagation of acoustic waves in a layered random
medium. Using the time-reversed method, we prove the space-time refocusing
effect and the stabilization for acoustic signals. This work is a generalization of
ref. 4 and 7 in the three-dimensional case.
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1. INTRODUCTION

A time-reversal mirror is, roughly speaking, a device which is capable of
receiving an acoustic signal in time, keeping it in memory, and sending it,
or a part of it, back into the medium in the reversed direction of time. Time-
reversal mirrors have been developed in the context of ultrasounds by
Mathias Fink and his team at the Laboratoire Ondes et Acoustique
(ESPCI-Paris). They have studied experimentally their effects and proposed
various applications. One of the striking effects is the refocusing property
which can be described as follows: an acoustic pulse, initially like a point
source, which propagates through a random medium produces a trans-
mitted signal with a coda. If a part of this coda is time-reversed and sent
back into the same medium one observes a refocusing at the place of the
initial source. Moreover it seems that randomness improves this refocusing
effect. In recent works, Clouet–Fouque (4) and Ndzié, (7) have analysed
mathematically this effect in a one-dimensional model and in the context of
separation of scales between the correlation length of the inhomogeneities

File: KAPP/822-joss/104_5-6 342349 - Page : 1/20 - Op: DS - Time: 13:31 - Date: 13:08:2001



present in the medium, the typical wavelengths of the pulse and the dis-
tance of propagation as introduced in ref. 1. In the one-dimensional case
only the refocusing effect in time is present. This work is a generalization of
ref. 4 to the three-dimensional layered case. In the framework of separation
of scales for randomly layered media, (1) we derive mathematically by
applying simultaneously the approximation-diffusion theorem (6) and the
stationary phase theorem, (2) the space-time refocusing effect and the sta-
bilization for time-reversed acoustic signals. Furthermore, we have intro-
duced a variation of scales in the definition of the time-reversed pulse. This
technique provides important information on the relation between the
position of the time-reversal mirror, the portion of the signal used as the
new pulse on the one hand, and the shape of the new reflected signal on the
other hand.

The structure of this paper is as follows. In the next section, the model
of the problem as well as the definitions of some functions are given. In
Section 3, we give the equations of amplitudes with their boundary values.
Our main result on refocusing properties is stated and proved in Section 4.
Section 5 contains the stabilization of the time-reversal wave, and in the
appendix, we give a version of the approximation-diffusion theorem.

2. FORMULATION OF THE PROBLEM

2.1. The Acoustic Equations in Layered Media

We consider acoustic wave propagation in a three-dimensional space
described by the linearized equations of momentum and mass conservation
for the velocity uF(t, x, y, z) and pressure p(t, x, y, z),

˛r(z) “uF“t+Np=F(t, x) d(z−zs)eF

1
K
“p
“t
(z)+N · uF=0

(1)

where r=r(z) and K=K(z) are respectively the density and bulk modulus
of the medium layered in the vertical z direction and x=(x, y) is the
horizontal offset. We assume a vertical source, eF=(0, 0, 1), at depth zs < 0
but near the surface {z=0}, with a smooth compactly supported pulse-
shape function F(t, x). We also assume that the medium is randomly
varying in a slab {−L < z < 0} of thickness L and homogeneous above the
surface {z > 0} and below the slab {z < −L}. Only the bulk modulus K is
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varying inside of the slab as described in the next section, the density r
being constant:

1
K(z)

=˛
1
K0

if z > 0

1
K2

if z < −L

and r(z)=˛
r0 if z > 0

r1 if −L < z < 0

r2 if z < −L

(2)

In the derivation of the boundary conditions for these equations (Section
3.3) we shall assume that the source is inside of the slab near the interface
{z=0} and that the density r0 above this interface is much smaller than
the density r1 just below.

2.2. Separation of Scales

We will adopt the separation of scales introduced by G. Papanicolaou
and his co-workers in ref. 1. More precisely, we will assume that the wave-
lengths are of order e, the correlation length of order e2 and macro-
scopic variations in order one; with e a small non-negative real. It is in
these scales that the pulse acts as a probe.

We define the bulk modulus in the slab {−L < z < 0} as:

1
K(z)

=
1
K1(z)
11+g 1z, z

e2
22 (3)

where K1 is a smooth and positive function; g(z, .) is a centered stochastic
process bounded by a constant strictly less than one. We will assume that
g(z, .) is stationary and has good mixing properties. Furthermore, we will
assume that the correlation coefficient a(z)=>+.0 E{g(z, 0)g(z, s)} ds of
g(z, .) is finite and strictly positive.

The function F defined in the system (1) depends on the parameter e as
follows:

F(t, x)=
1
e3
f 1 t
e
,

x
e
2 (4)

This means that we send a pulse of duration a wavelength. The term 1
e
3 is

just a normalization factor for the reflected velocity.
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2.3. Macroscopic Quantities

Let h=h(t, x, z) be an integrable function. We define a specific
Fourier transform in time and transverse space variables for our problem
by:

ĥ(w, o, z)=F e iw(t−o.x)h(t, x, z) dt dx (5)

where o=(o1, o2) represents the horizontal slowness vector.
This Fourier transform allows the separation of plane waves.
In order to simplify the equations of this problem, it is convenient to

introduce the acoustic speed c, the impedance z and the travel time y:

c(z)=˛
=K0
r0

if z > 0

=K1(z)
r1

if −L < z < 0

=K2
r2

if z < −L

(6)

z(z, o)=
r(z) c(z)

`1−c2(z) |o|2
(7)

y(z, o)=F
z

0

`1−c2(s) |o|2

c(s)
ds (8)

where |o| stands for the euclidian norm of the horizontal slowness vector.
As the time-reversal mirror doesn’t keep in memory evanescent

pulse, (5) we restrict ourselves to propagative waves. We will then assume
1−c2(z) |o|2 greater than a positive constant.

3. AMPLITUDES EQUATIONS

3.1. Decomposition Into Upgoing and Downgoing Waves

Denote by (u1, u2, u3) the components of the velocity vector u. The
Fourier transform of the system (1) gives the following differential system
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˛
û1=
o1

r
p̂

û2=
o2

r
p̂

− iwrû3+
“p̂
“z
=f̂(ew, o) d(z−zs)

−iw 1 1
K
−
|o|2

r
2 p̂+“û3

“z
=0

(9)

Throughout the sequel, we will simply denote by u the vertical com-
ponent of the velocity.

Combining the two last equations of the system (9), we obtain :

“
2

“z2
+w2 1 r

K
−|o|22 p̂=f̂(ew, o) d −(z−zs) (10)

As in the homogeneous unidimensional case, we can write the Fourier
transform of the pressure and the velocity in the form:

p̂=`z (Ae iwy−Be −iwy) and û=
1

`z
(Ae iwy+Be −iwy) (11)

where A=A(w, o, z) and B=B(w, o, z) represent respectively the upgoing
and downgoing waves amplitudes.

We will assume that waves which reach the interface z=−L don’t
return in the random medium. More precisely, we will take

A(w, o, −L)=0

3.2. Equations for the Amplitudes

We will analyse our problem for high frequencies. We then introduce
the functions a and b:

a(w, o, z)=A 1w
e
, o, z2 and b(w, o, z)=B 1w

e
, o, z2
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Using equations (9) and (11), we obtain the random differential equation:

“

“z
1a
b
2=1
e
P e(z, w, o) 1

a

b
2+Q e(z, w, o) 1

a

b
2

+
1

2`z(zs, o)
f̂(w, o) R e

−iw
e
y(zs, o)

−e
iw
e
y(zs, o)
S d(z−zs) (12)

where P e and Q e are the 2×2 matrices:

P e(w, o, z)=iwm e R 1 −e −
2iwy
e

e
2iwy
e −1
S and

Q e(w, o, z)=
1
2z
“z

“z
R 0 e −

2iwy
e

e
2iwy
e 0
S

with

m e=me(w, o, z)=
z(z, o) g 1z, z

e
2

2c2(z) r(z)

We will now derive the values of the amplitudes a and b at the inter-
face z=0.

Denote by C the reflection coefficient defined by

C(w, o, z)=
a(w, o, z)
b(w, o, z)

(13)

From equation (12), it follows that C satisfies the Riccati random equation:

“C

“z
=−

iw
e
m e [e −

2iwy
e −2C+C2e

2iwy
e ]+

1
2z
“z

“z
[e −

2iwy
e −C2e

2iwy
e ]

C|z=−L+=
z(−L+, o)−z(−L −, o)
z(−L+, o)+z(−L −, o)

e −
2iwy(−L, o)

e

(14)

The value of C at the interface z=−L is derived from the continuity of p̂
and û at z=−L and from the condition a(w, o, −L)=0.
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Using the geophysical hypothesis that r0r1 is negligible, we obtain that
the pressure vanishes in the homogeneous half space {z > 0}. It then
follows:

a(w, o, 0+)=b(w, o, 0+)

From equation (12), we have the jump equations:

a(w, o, z −s )=a(w, o, z
+
s )−

1

2`z(zs, o)
f̂(w, o) e −

iwy(zs, o)
e

b(w, o, z −s )=b(w, o, z
+
s )+

1

2`z(zs, o)
f̂(w, o) e −

iwy(zs, o)
e

The above equations give the value of the reflection coefficient at z −s :

C(w, o, z −s )=

a(w, o, z+s )−
1

2`z(zs, o)
f̂(w, o) e −

iwy(zs, o)
e

b(w, o, z+s )+
1

2`z(zs, o)
f̂(w, o) e −

iwy(zs, o)
e

When zs goes to zero, we have:

a(w, o, 0+)=
1

2`z(0, o)

1+C(w, o, 0 −)
1−C(w, o, 0 −)

f̂(w, o)

We then deduce the boundary values:

1a
b
2
z=0−
=

f̂(w, o)

(1−C(w, o, 0 −))`z(0, o)
1C(w, o, 0

−)

1
2 (15)

where C(w, o, 0 −) is obtained by solving equation (14).

4. TIME-REVERSAL METHOD

4.1. The New Pulse

We suppose that there is a time-reversal mirror located at the point
(x, 0). Opening a window in time and space of size e, we have by inverse
Fourier transform, the scaled integral representation of the reflected veloc-
ity at the emerging time t

u(t+es, x+ex, 0)=
1

(2pe)3
F
1

z(0, o)
e −iw(s−o.x̃)e −

iw
e
(t−o.x)û 1w

e
, o, 02 w2dw do

(16)
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From equations (11) and (15), we obtain the Fourier transform of the
velocity at the interface z=0:

û 1w
e
, o, 02= 1

`z(0, o)

1+C(w, o, 0 −)
1−C(w, o, 0 −)

f̂(w, o) (17)

Reporting the above quantity in equation (16), the integral expression of
the reflected velocity becomes:

u(t+es, x+ex̃, 0)=
1

(2pe)3
F
1

z(0, o)
e −iw(s−o.x̃)e −

iw
e
(t−o.x)f̂(w, o)

×
1+C(w, o, 0 −)
1−C(w, o, 0 −)

w2dw do (18)

We apply the time-reversal method introduced by J. F. Clouet and J. P.
Fouque in ref. 4. This method consists here to take the velocity (18) or a
part of it with a time direction reversed as the pulse:

g(s, x̃)=u(t− es, x+ex̃, 0) G(− ea1s, eb1x̃) (19)

where a1 and b1 are constants and G is a regular function bounded by one.
The function G represents the part of the velocity used as the new pulse.
We can take for example

G(t, x)=
1

(2pr)
3
2

exp 3 −t
2+x2+y2

2r2
4 where r is a nonnegative real.

The propagation model for the new pulse is described by the Euler
equations

˛r(z) “uF“t+Np=ec1g 1 t
e
,

x
e
2 d(z−zs)eF

1
K
“p
“t
(z)+N · uF=0

(20)

where the exponent c1 is a constant depending on a1 and b1.
The propagation source corresponds to the position of the time-rever-

sal mirror.
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4.2. The New Reflected Velocity

We deduce the integral representation of the new reflected velocity at
the point (x0, 0) and at the emerging time t0 by substituting f̂ by ec1+3ĝ in
equation (18).

u(t0+es, x0+ex, 0)=
ec1

(2p)3
F
1

z(0, o)
e −iw(s−o.x̃)e −

iw
e
(t0−o.x0)ĝ(w, o)

1+C(w, o, 0 −)
1−C(w, o, 0 −)

w2dw do (21)

The Fourier transforms of the first reflected velocity u(t− es, x+x̃, 0) and
of the function G(− ea1s, eb1x̃) are respectively:

1
e3
e
iw
e
(t+o.x)f̄̂(w, −o)

1+C̄(w, o, 0)
1− C̄(w, o, 0)

and
1
ea1+b1

Ḡ̂ 1w
e
, −

o

eb1−a1
2

(f̄ denotes the complex conjugate of f).
The convolution of these two Fourier transforms gives:

ĝ(w, o)=e −3−a1−2b1 F z −1(0, o1) e
iw1
e (t+o1.x)f̄̂(w1, −o1) Ḡ̂ 1

w−w1
ea1
, −
o−o1
eb1−a1
2

×
1+C̄(w1, −o1, 0 −)
1− C̄(w1, −o1, 0 −)

dw1 do1 (22)

From equation (14), it follows that the function C is even in o.
The new reflected velocity then becomes:

u(t0+es, x0+ex̃, 0)=
ec1−3−a1−2b1

(2p)3
F

1
z(0, o1) z(0, o2)

e −iw1(s−o1.x̃)e −
iw1
e
(t0−o1.x0)

×e
iw2
e
(t−o2.x) f̂(w2, −o2) Ḡ̂ 1

w1−w2
ea1

, −
o1−o2
eb1−a1
2

×
1+C(w1, o1, 0)
1−C(w1, o1, 0)

1+C̄(w2, o2, 0)
1− C̄(w2, o2, 0)

w21dw1 dw2 do1 do2 (23)
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5. ASYMPTOTIC ANALYSIS

5.1. Refocusing

In this subsection, we give refocusing properties of acoustical pulses
travelling a layered random medium. These properties are:

Theorem 5.1. The new reflected pulse is only observable at the
initial source and after a time equal to the emerging time of the first
reflected pulse. Furthermore, this pulse doesn’t depend on:

1. the quantity of the reflected velocity used as pulse if a1 < 1 .
2. the time necessary to go to the TRM and to reach the source if

a1 > 1.
3. the time and the position of the TRM at the interface z=0 if a1 > 1

and b1−a1 > 1.

Proof. We will assume the convergence in law of the process 1+C1−C to a
regular process (this result is established in the forthcoming section).

Let:

w1=w−
1
2 e
p1h; w2=w+

1
2 e
p1h; o1=o−

1
2 e
q1l; o2=o+

1
2 e
q1l

where

p1=max{1, a1}, and q1=max{1, b1}

Using this change of variables, we have:

u(t0+es, x0+ex̃, 0)=
1
(2p)3

F z −1 10, o−1
2
eq1l2

×z −1 10, o+1
2
eq1l2 e −iwe (t0− t−o.(x0+x))

e −iw(s−o.x̃)−
1
2 ie
q1−1wl.(x0−x)e

iep1−1h
2 (t0+t−o.(x0−x))

exp 3 −1
2
ieq1w.l.x̃+

1
2
iep1h 5s−1o−1

2
eq1l2.x̃+1

2
eq1−1l.(x0+x)64

f̂ 1w+1
2
ep1h, −o−

1
2
eq1l2 1+C(w−

1
2 e
p1h, o− 12 e

q1l, 0)
1−C(w− 1

2 e
p1h, o− 1

2 e
q1l, 0)

Ĝ(ep1−a1h, eq1−b1+a1l)
1+C̄(w+12 e

p1h, o+12 e
q1l, 0)

1− C̄(w+12 e
p1h, o+12 e

q1l, 0)

×1w−1
2
ep1h2

2

dw dh do dl (24)
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By the linearity of the system (20), we can take >G(t, x) dt dx=1 without
loss of generality.

When e tends to zero, the oscillant integral (24) vanishes if (x0, t0) is
different from (−x, t). From equation (24), the other part of the theorem
is obvious.

5.2. Convergence of the Mean Velocity Field

5.2.1. The Propagator

When e is sufficiently small, the equation (12) is reduced to:

“

“z
1a
b
2=1
e
P e 1
a

b
2 (25)

Let Y e=Ye(z, y(z, o)e ,
z
e
2 , w, o) be the 2×2 matrix solution of the equation:

dY e

dz
=
1
e
P eY e (26)

Y e|z=0=I (27)

where I is the identity matrix.
The matrix Y e is the propagator or the fundamental matrix of the

equation (25). This matrix has the following properties:

1.

Y e=1
u e v e

v̄ e ū e
2 with ||u e||2−||v e||2=1

2. if (a, b) satisfies (25) then:

Y e 1
a(0)

b(0)
2=1

a(z)

b(z)
2

From the above properties of the propagator, we obtain the conservation
of energy relation

|a(z)|2−|b(z)|2=|a(0)|2−|b(0)|2
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and the reflection coefficient at the interface z=0

C(0)=−
v e(−L)
u e(−L)

Consequently, the modulus of C is less than one.
The moment of order n of the velocity depends on 2n frequencies. For

the analysis of this quantity, we define the 4n-dimensional propagator Y e:

Y e=R
Y e1

Y e2

z

Y e2n

S
with Y ej=Y

e(z, wjŒ+
1
2 (−1)

j ehjŒ, ojŒ+
1
2 (−1)

j eljŒ) where the index jŒ is the
entire part of j+12 . The matrix Y e is the solution of the linear differential
equation:

dY e

dz
=
1
e
P eY e

Y e | z=0=I (28)

where P e is the 4n×4n matrix:

P e=R
P e1

P e2

z

P e2n

S
with

P ej=P
e(z, wjŒ+

1
2 (−1)

j ehjŒ, ojŒ+
1
2 (−1)

j eljŒ)

We will analyse only the first two moments of the reflected velocity. We
will then take n=2.
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5.2.2. Limiting Infinitesimal Generator

Let m1, m2 and m3 be the Pauli matrices:

m1=
1
2
1 i 0
0 −i
2 ; m2=

1
2
10 1
1 0
2 ; m3=

1
2
10 i

− i 0
2

The matrices P ej belong to the Lie algebra generated by m1, m2 and m3

P ej=C
3

k=1
M j
kmk+eC

3

k=1
N jkmk (29)

where

M j
1=2wjŒm

e(z, ojŒ)

M j
2=−2wjŒm

e(z, ojŒ) sin(F e(wjŒ, ojŒ, ljŒ, hjŒ))

M j
3=−2wjŒm

e(z, ojŒ) cos(F e(wjŒ, ojŒ, ljŒ, hjŒ))

N j1=(−1)
j 1wjŒ

NoyjŒ
yjŒ
.ljŒ+hjŒ2 m e(z, ojŒ)

N j2=(−1)
j+1 1wjŒ

NoyjŒ
yjŒ
.ljŒ+hjŒ2 m e(z, ojŒ) sin(F e(wjŒ, ojŒ, ljŒ, hjŒ))

N j3=(−1)
j+1 1wjŒ

NoyjŒ
yjŒ
.ljŒ+hjŒ2 m e(z, ojŒ) cos(F e(wjŒ, ojŒ, ljŒ, hjŒ))

with

F e(wjŒ, ojŒ, ljŒ, hjŒ)=
2wjŒyjŒ
e
+(−1) jwjŒljŒ.NoyjŒ+(−1) j hjŒyjŒ

yjŒ=y(z, ojŒ) and No=1
“

“o1
,
“

“o2
2 .

We can then write equation (28) in the form:

dY e

dz
=
1
e
F 1Y e, z,

y

e
,
z
e2
2+G 1Y e, z,

y

e
,
z
e2
2 (30)
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where F and G are the centered random matrices:

F 1Y e, z,
y

e
,
z
e2
2=R

C
3

k=1
M1
kmk

C
3

k=1
M2
kmk

C
3

k=1
M3
kmk

C
3

k=1
M4
kmk

S Y e

G 1Y e, z,
y

e
,
z
e2
2=R

C
3

k=1
N1kmk

C
3

k=1
N2kmk

C
3

k=1
M3
kmk

C
3

k=1
M4
kmk

S Y e

Let u e be defined by:

u e(z, Y1, Y2, Y3, Y4)=E{g(Y
e
1Y1, Y

e
2Y2, Y

e
3Y3, Y

e
4Y4)}

By the application of the approximation-diffusion theorem given in the
appendix, u e converges, when e goes to zero, to the function u solution of
the backward equation:

“u
“z
+Lzu=0

u(0, Y1, Y2, Y3, Y4)=g(Y1, Y2, Y3, Y4)

where Lz=L1+L2+L3 is the infinitesimal generator:

L1=
a(z)
2
1w1z(z, o1)
c2(z)r(z)
22 [2D(1)1 D (1)1 +4D (1)1 D (2)1 +2D(2)1 D (2)1 +D (1)2 D (1)2 +D (2)2 D (2)2

+D(1)3 D
(1)
3 +2 cos(2(w1l1.Noy(z, o1)+h1y(z, o1)))(D

(1)
2 D

(2)
2 +D

(1)
3 D

(2)
3 )]
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L2=
a(z)
2
1w2z(z, o2)
c2(z) r(z)
22 [2D(3)1 D (3)1 +4D (3)1 D (4)1 +2D (4)1 D (4)1 +D (3)2 D (3)2 +D (4)2 D (4)2

+D(3)3 D
(3)
3 +2 cos (2(w2l2.Noy(z, o2)+h2y(z, o2)))(D

(3)
2 D

(4)
2 +D

(3)
3 D

(4)
3 )]

L3=
2w1w2z(z, o1) z(z, o2) a(z)

c4(z) r2(z)
[D(3)1 D

(1)
1 +D

(3)
1 D

(2)
1 +D

(4)
1 D

(1)
1 +D

(4)
1 D

(2)
1 ]

where D (j)k is the operator introduced in ref. 3:

D (j)k f(Y1, Y2, Y3, Y4)=lim
hQ 0

f(Y1, ..., emkhYj, ..., Y4)−f(Y1, Y2, Y3, Y4)
h

with k=1, · · · , 3 and j=1, · · · , 4.

5.2.3. Asymptotic Variance

The asymptotic analysis of the variance of the velocity gives the
following result:

Theorem 5.2. The new reflected velocity converges in quadratic
mean, when e tends to zero, to the deterministic function:

lim
eQ 0
u(t+es, −x, 0)=

1
2p

F e −iws[L(h, w, l) f G1(h, w, l)](t, x) dw

where

L(w, t, x)=
w2

(2p)2
F z −2(0 −, o) f̄̂(w, −o)

51+4 C
+.

N=1
WN(0, t+o.x, x, o, w)6 do

and

G1(t, w, x)=
w2

(2p)2
F e iht+iwl.xĜ(h, l) dh dl

withWN solution of:

“WN

“z
+2Nyz 1

“WN

“t
+
Noyz
yz
.NxWN2=w

2z2(z, o) N2a(z)
2c4(z) r2(z)

×[WN−1−2WN+WN+1]

WN|z=−L=(CI(−L))2N dtdx
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This theorem means that the time-reversal method preserves the
Anstey–O’doherty theory. (8)

Proof. As the modulus of the reflection coefficient is less than one,
we can write the velocity as the series:

lim
eQ 0
E{u(t+es, −x, 0)}=

1
(2p)3

F e −iw(s−l.x)e ih(t+o.x) z −2(0, o)

× f̄̂(w, −o) Ĝ(h, l) w2

× lim
eQ 0
E 31+2 C

+.

N=1

1CN 1w− e
2
h, o−

e

2
l, 0 − 2

+C̄N 1w+e
2
h, o+

e

2
l, 0 − 22

+4 C
+.

N, M=1
CN 1w− e

2
h, o−

e

2
l, 0 − 2

× C̄M 1w+e
2
h, o+

e

2
l, 0 − 24 dw do dh dl (32)

Denote by ŨN, M the function :

ŨN, M(z, t, x, o, w)=
w2

(2p)2
F e ih(t−(N+M)y)+iwl(x−(N+M) Noy)Ĝ(h, l) UN, Mdh dl

(33)

with

UN, M=CN 1w− e
2
h, o−

1
2
el, z2 C̄M 1w+e

2
h, o+

1
2
el, z2

When e is sufficiently small, the Riccati equation (14) is reduced to:

“C

“z
=−

iw
e
m e[e −

2iwy
e −2C+C2e

2iwy
e ]+negligible terms (34)
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It then follows that ŨN, M satisfies:

“ŨN, M

“z
=−

iw
e
m e[Ne

−2iwy
e ŨN−1, M+Ne

2iwy
e ŨN+1, M (35)

−Me
2iwy
e ŨN, M−1−Me

−2iwy
e ŨN, M+1]

×
2iw
e
m e(N−M) ŨN, M

−(N+M)(yz+me) 1
“ŨN, M

“t
+
Noyz
yz
.NxŨN, M2

+negligible terms

ŨN, M|z=−L=(CI(−L))N (C̄I(−L))M e −2iw(N−M)
y(−L, o)
e G1(t, w, x)

where

G1(t, w, x)=
w2

(2p)2
F e iht+iwl.xĜ(h, l) dhdl

This equation can be re-written as follows:

“

“z
ŨN, M(z, t+(N+M)(y+m1), x+(N+M)(Noy+m2), o, w)

=−
iw
e
m e[Ne

−2iwy
e ŨN−1, M+Ne

2iwy
e ŨN+1, M−Me

2iwy
e ŨN, M−1

−Me
−2iwy
e ŨN, M+1]

2iw
e
m e(N−M) ŨN, M+negligible terms (36)

ŨN, M|z=−L=(CI(−L))N (C̄I(−L))Me −2iw(N−M)
y(−L, o)
e G1(t, w, x)

where m1 and m2 are the stochastic processes:

m1=m1(w, o, z)=F
z

0
m e(w, o, s) ds

m2=m2(w, o, z)=F
z

0
m e(w, o, s)

Noys
ys
ds
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If follows that the vector X e with components ŨN, M satisfies an equation in
the form:

dX e

dz
=
1
e
A 1z, y

e
,
z
e2
2 X e+B 1z, y

e
,
z
e2
2 X e

where A is a zero-mean random matrix.
Let W̃N, M be

W̃N, M(z, t, x, o, w)=lim
eQ 0
e
2iw
e
(N−M) y(−L, o)E{ŨN, M(z, t, x, o, w)}.

The function W̃N=W̃N, N is the solution of the transport equation:

“W̃N

“z
+2Nyz 1

“W̃N

“t
+
Noyz
yz
.NxW̃N2=w

2z2(z, o) N2a(z)
2c4(z) r2(z)

×[W̃N−1−2W̃N+W̃N+1] (37)

W̃N|z=−L=(CI(−L))2N G1(t, w, x)

LetWN be the solution of the equation (37) with the boundary condition

WN|z=−L=(CI(−L))2N dtdx

We have, by the linearity of (37), the reflected velocity mean:

lim
eQ 0
E{u(t+es, −x, 0)}=

1
2p

F e −iws[L(h, w, l) f G1(h, w, l)](t, x) dw
(38)

where

L(w, t, x)=
w2

(2p)2
F z −2(0 −, o) f̄̂(w, −o)

×51+4 C
+.

N=1
WN(0, t+o.x, x, o, w)6 do (39)

From the form of the third term L3 of the infinitesimal generator, we
establish as in ref. 3 that the variance of the reflected velocity vanishes
when e goes to zero.
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6. APPENDIX

We recall a limit theorem dealing with the kind of equations satisfied
by the reflection coefficient. The version we give here is the one used by
Papanicolaou and his co-workers in ref. 1. A full demonstration of this
kind of result is given in ref. 6.

Theorem 6.1. Let X e(t) be a stochastic process with values in Rn

satisfying the following differential equation:

dXe(t)
dt
=
1
e
F 1X e(t), t, t

e
,
t
e2
2+G 1X e(t), t, t

e
,
t
e2
2

X e(0)=x

where F and G are random functions which map Rn×R×R×R to Rn.
Assume:

1. F(x, t, T, s) and G(x, t, T, s) are stationary and mixing in s for each
x, t and T fixed;

2. F(x, t, T, s) and G(x, t, T, s) are smooth in x;

3. E{F(x, t, T, s)}=0

then X e(t) converges weakly when e tends to zero to the diffusion X(t)
whose infinitesimal generator is:

Ltf(x)= lim
TQ+.

1
T
F
T

0
F
+.

0
E{F(x, t, y, 0).Nx[F(x, t, y, s).Nxf(x)]} dsdy

+ lim
TQ+.

1
T
F
T

0
E{G(x, t, y, 0).Nxf(x)} dy

In particular, u e(t, T, x)=E{g(Xe(t, T, x))} converges as e goes to 0
to u(t, T, x) solution of the backward Kolmogorov equation:

“u
“t
+Ltu=0 t [ T

u(T, T, x)=g(x)

Here X e(t, T, x) is the solution of (6.1) with X e(T, T, x)=x and g is a
smooth function.
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